Christian Buj, Michael Münter, Benedikt Schmarbeck, Jens Horstmann, Gereon Hüttmann, and Ralf Brinkmann,
Noncontact holographic detection for photoacoustic tomography, J Biomed Opt , vol. 22, no. 10, pp. 1-14, 2017.
DOI:10.1117/1.jbo.22.10.106007
Bibtex: BibTeX
@article{Buj2017,
   author = {Buj, C; Münter, M; Schmarbeck, B; Horstmann, J; Hüttmann, G and Brinkmann, R},
   title = {Noncontact holographic detection for photoacoustic tomography},
   journal = {J Biomed Opt},
   
   pages = {1-14},
   DOI = {10.1117/1.jbo.22.10.106007},
   year = {2017},
   type = {Journal Article}
}


J. Horstmann, S. Siebelmann, I. Glasunow, A. Schadschneider, and Gereon Hüttmann,
OCT verstehen – Teil 2: Praktische Aspekte und Anwendung, Augenheilkunde up2date , vol. 6, no. 04, pp. 305-320, Nov. 2016.
DOI:10.1055/s-0042-117459
Bibtex: BibTeX
@article{Horstmann2016,
   author = {Horstmann, J. and Siebelmann, S. and Schulz-Hildebrandt, H. and Glasunow, I. and Schadschneider, A. and Hüttmann, G.},
   title = {OCT verstehen – Teil 2: Praktische Aspekte und Anwendung},
   journal = {Augenheilkunde up2date},
   volume = {6},
   number = {04},
   pages = {305-320},
   ISSN = {1616-9719},
   DOI = {10.1055/s-0042-117459},
   year = {2016},
   type = {Journal Article}
}
Jens Horstmann, S. Siebelmann, I. Glasunow, A. Schadschneider, and Gereon Hüttmann,
OCT verstehen – Teil 1: Physikalische Grundlagen, Augenheilkunde up2date , vol. 6, no. 04, pp. 289-300, 2016.
DOI:10.1055/s-0042-113337
Bibtex: BibTeX
@article{Horstmann2016,
   author = {Horstmann, J. and Siebelmann, S. and Schulz-Hildebrandt, H. and Glasunow, I. and Schadschneider, A. and Hüttmann, G.},
   title = {OCT verstehen – Teil 1: Physikalische Grundlagen},
   journal = {Augenheilkunde up2date},
   volume = {6},
   number = {04},
   pages = {289-300},
   ISSN = {1616-9719},
   DOI = {10.1055/s-0042-113337},
   year = {2016},
   type = {Journal Article}
}
J. Horstmann, and M. Munter,
Full-field speckle interferometry for non-contact photoacoustic tomography, Phys Med Biol , vol. 60, no. 10, pp. 4045--58, 2015.
Bibtex: BibTeX
@article{Horstmann2015,
   title        = {Full-field speckle interferometry for non-contact photoacoustic tomography},
   author       = {Horstmann, J. and Spahr, H. and Buj, C. and Munter, M. and Brinkmann, R.},
   journal      = {Phys Med Biol},
   volume       = 60,
   number       = 10,
   pages        = {4045--58},
   note         = {1361-6560 abstract = {A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.}, ISSN = {0031-9155}, DOI = {10.1088/0031-9155/60/10/4045}, year = {2015}, type = {Journal Article}}
}
J Horstmann,
Speckle-based off-axis holographic detection for non-contact photoacoustic tomography, Current Directions in Biomedical Engineering , vol. 1, pp. 356-360, 2015.
Bibtex: BibTeX
@article{Buj2015,
   author = {Buj, C and Horstmann, J and Münter, M and Brinkman, R},
   title = {Speckle-based off-axis holographic detection for non-contact photoacoustic tomography},
   journal = {Current Directions in Biomedical Engineering},
   volume = {1},
   pages = {356-360},
   year = {2015},
   type = {Journal Article}
}
J Horstmann,
Speckle-based holographic detection for non-contact Photoacoustic Tomography, in 48th annual conference of the German Society for Biomedical Engineering , 08.. 2014. pp. 844-847.
Bibtex: BibTeX
@inproceedings{Buj14,
   author = {Buj, C and Horstmann, J and Münter, M and Brinkmann, R},
   title = {Speckle-based holographic detection for non-contact Photoacoustic Tomography},
   booktitle = {48th annual conference of the German Society for Biomedical Engineering},
   volume = {59},
   pages = {844-847},
   type = {Conference Proceedings},
Year = { 2014}
}

J Horstmann,
Optical full-field holographic detection system for non-contact photoacoustic tomography, Proc. SPIE, 2014.
Bibtex: BibTeX
@inproceedings{
   author = {Horstmann, J and Brinkmann, R},
   title = {Optical full-field holographic detection system for non-contact photoacoustic tomography},
   publisher = {Proc. SPIE},
year = {2014},
   type = {Conference Proceedings}
}
Alexander Oepen, Jens Horstmann, and Ralf Brinkmann,
Characterization of an Electronic Speckle Pattern Detection System, in Studierendentagung , 2013.
Bibtex: BibTeX
@inproceedings{Oepen2013,
   author = {van Oepen, Alexander and Horstmann, Jens and Brinkmann, Ralf},
   title = {Characterization of an Electronic Speckle Pattern Detection System},
   booktitle = {Studierendentagung},
   type = {Conference Proceedings}
}
Jens Horstmann, and Ralf Brinkmann,
Non-contact photoacoustic tomography using holographic full field detection, Proc. SPIE, 2013. pp. 880007-880007-6.
File: 12.2033599
Bibtex: BibTeX
@inproceedings{Horstmann2013,
   author = {Horstmann, Jens and Brinkmann, Ralf},
   title = {Non-contact photoacoustic tomography using holographic full field detection},
   publisher = {Proc. SPIE},
   volume = {8800},
   pages = {880007-880007-6},
   note = {10.1117/12.2033599},
   abstract = {An innovative very fast non-contact imaging technique for Photoacoustic Tomography is introduced. It is based on holographic optical speckle detection of a transiently altering surface topography for the reconstruction of absorbing targets. The surface movement is obtained by parallel recording of speckle phase changes known as Electronic Speckle Pattern Interferometry. Due to parallelized 2-D camera detection and repetitive excitation with variable delay with respect to the image acquisition, data recording of whole volumes for Photoacoustic Imaging can be completed in times far below one second. The size of the detected area is scalable by optical magnification. As a proof of concept, an interferometric setup is realized, capable of surface displacement detection with an axial resolution of less than 3 nm. The potential of the proposed method for in vivo Photoacoustic Imaging is discussed.},
   url = {http://dx.doi.org/10.1117/12.2033599},
   type = {Conference Proceedings},
year = { 2013}
}
Jens Horstmann, Alexander Baade, and Ralf Brinkmann,
Photoacoustic blood vessel detection during surgical laser interventions, SPIE ECBO, 2011. pp. 80920Z-80920Z-6.
File: 12.889635
Bibtex: BibTeX
@inproceedings{Horstmann2011,
   author = {Horstmann, Jens and Baade, Alexander and Brinkmann, Ralf},
   title = {Photoacoustic blood vessel detection during surgical laser interventions},
   publisher = {SPIE ECBO},
   volume = {8092},
   pages = {80920Z-80920Z-6},
   note = {10.1117/12.889635},
   abstract = {This paper presents a discussion about the potential of photoacoustics with regard to its application in surgical assistance during minimally invasive, laser assisted interventions. Aim of the work is the detection of obscured large blood vessels in order to prevent unintentional dissection. Based on spectroscopic investigations of the target tissue (liver), a wavelength for the photoacoustic excitation laser was chosen with respect to a high absorption contrast between the vessel and the surrounding liver tissue. An experimental setup featuring a simple liver model is created. Preliminary results show, that vessels with a diameter of 2 mm can be detected up to a distance of 1 mm from the treatment fibre. It is shown, that detection of acoustic waves induced inside liver is feasible over distances higher than 10 cm.},
   url = {http://dx.doi.org/10.1117/12.889635},
   type = {Conference Proceedings},
year = { 2011}
}