Christian
Buj,
Michael
Münter,
Benedikt
Schmarbeck,
Jens
Horstmann,
Gereon
Hüttmann, and
Ralf
Brinkmann,
Noncontact holographic detection for photoacoustic tomography, J Biomed Opt , vol. 22, no. 10, pp. 1-14, 2017.
Noncontact holographic detection for photoacoustic tomography, J Biomed Opt , vol. 22, no. 10, pp. 1-14, 2017.
DOI: | 10.1117/1.jbo.22.10.106007 |
Bibtex: | @article{Buj2017, author = {Buj, C; Münter, M; Schmarbeck, B; Horstmann, J; Hüttmann, G and Brinkmann, R}, title = {Noncontact holographic detection for photoacoustic tomography}, journal = {J Biomed Opt}, pages = {1-14}, DOI = {10.1117/1.jbo.22.10.106007}, year = {2017}, type = {Journal Article} } |
J.
Horstmann,
S.
Siebelmann,
I.
Glasunow,
A.
Schadschneider, and
Gereon
Hüttmann,
OCT verstehen – Teil 2: Praktische Aspekte und Anwendung, Augenheilkunde up2date , vol. 6, no. 04, pp. 305-320, Nov. 2016.
OCT verstehen – Teil 2: Praktische Aspekte und Anwendung, Augenheilkunde up2date , vol. 6, no. 04, pp. 305-320, Nov. 2016.
DOI: | 10.1055/s-0042-117459 |
Bibtex: | @article{Horstmann2016, author = {Horstmann, J. and Siebelmann, S. and Schulz-Hildebrandt, H. and Glasunow, I. and Schadschneider, A. and Hüttmann, G.}, title = {OCT verstehen – Teil 2: Praktische Aspekte und Anwendung}, journal = {Augenheilkunde up2date}, volume = {6}, number = {04}, pages = {305-320}, ISSN = {1616-9719}, DOI = {10.1055/s-0042-117459}, year = {2016}, type = {Journal Article} } |
Jens
Horstmann,
S.
Siebelmann,
I.
Glasunow,
A.
Schadschneider, and
Gereon
Hüttmann,
OCT verstehen – Teil 1: Physikalische Grundlagen, Augenheilkunde up2date , vol. 6, no. 04, pp. 289-300, 2016.
OCT verstehen – Teil 1: Physikalische Grundlagen, Augenheilkunde up2date , vol. 6, no. 04, pp. 289-300, 2016.
DOI: | 10.1055/s-0042-113337 |
Bibtex: | @article{Horstmann2016, author = {Horstmann, J. and Siebelmann, S. and Schulz-Hildebrandt, H. and Glasunow, I. and Schadschneider, A. and Hüttmann, G.}, title = {OCT verstehen – Teil 1: Physikalische Grundlagen}, journal = {Augenheilkunde up2date}, volume = {6}, number = {04}, pages = {289-300}, ISSN = {1616-9719}, DOI = {10.1055/s-0042-113337}, year = {2016}, type = {Journal Article} } |
J.
Horstmann, and
M.
Munter,
Full-field speckle interferometry for non-contact photoacoustic tomography, Phys Med Biol , vol. 60, no. 10, pp. 4045--58, 2015.
Full-field speckle interferometry for non-contact photoacoustic tomography, Phys Med Biol , vol. 60, no. 10, pp. 4045--58, 2015.
J Horstmann,
Speckle-based off-axis holographic detection for non-contact photoacoustic tomography, Current Directions in Biomedical Engineering , vol. 1, pp. 356-360, 2015.
Speckle-based off-axis holographic detection for non-contact photoacoustic tomography, Current Directions in Biomedical Engineering , vol. 1, pp. 356-360, 2015.
J Horstmann,
Speckle-based holographic detection for non-contact Photoacoustic Tomography, in 48th annual conference of the German Society for Biomedical Engineering , 08.. 2014. pp. 844-847.
Speckle-based holographic detection for non-contact Photoacoustic Tomography, in 48th annual conference of the German Society for Biomedical Engineering , 08.. 2014. pp. 844-847.
J Horstmann,
Optical full-field holographic detection system for non-contact photoacoustic tomography, Proc. SPIE, 2014.
Optical full-field holographic detection system for non-contact photoacoustic tomography, Proc. SPIE, 2014.
Alexander
Oepen,
Jens
Horstmann, and
Ralf
Brinkmann,
Characterization of an Electronic Speckle Pattern Detection System, in Studierendentagung , 2013.
Characterization of an Electronic Speckle Pattern Detection System, in Studierendentagung , 2013.
Jens
Horstmann, and
Ralf
Brinkmann,
Non-contact photoacoustic tomography using holographic full field detection, Proc. SPIE, 2013. pp. 880007-880007-6.
Non-contact photoacoustic tomography using holographic full field detection, Proc. SPIE, 2013. pp. 880007-880007-6.
Datei: | 12.2033599 |
Bibtex: | @inproceedings{Horstmann2013, author = {Horstmann, Jens and Brinkmann, Ralf}, title = {Non-contact photoacoustic tomography using holographic full field detection}, publisher = {Proc. SPIE}, volume = {8800}, pages = {880007-880007-6}, note = {10.1117/12.2033599}, abstract = {An innovative very fast non-contact imaging technique for Photoacoustic Tomography is introduced. It is based on holographic optical speckle detection of a transiently altering surface topography for the reconstruction of absorbing targets. The surface movement is obtained by parallel recording of speckle phase changes known as Electronic Speckle Pattern Interferometry. Due to parallelized 2-D camera detection and repetitive excitation with variable delay with respect to the image acquisition, data recording of whole volumes for Photoacoustic Imaging can be completed in times far below one second. The size of the detected area is scalable by optical magnification. As a proof of concept, an interferometric setup is realized, capable of surface displacement detection with an axial resolution of less than 3 nm. The potential of the proposed method for in vivo Photoacoustic Imaging is discussed.}, url = {http://dx.doi.org/10.1117/12.2033599}, type = {Conference Proceedings}, year = { 2013} } |
Jens
Horstmann,
Alexander
Baade, and
Ralf
Brinkmann,
Photoacoustic blood vessel detection during surgical laser interventions, SPIE ECBO, 2011. pp. 80920Z-80920Z-6.
Photoacoustic blood vessel detection during surgical laser interventions, SPIE ECBO, 2011. pp. 80920Z-80920Z-6.
Datei: | 12.889635 |
Bibtex: | @inproceedings{Horstmann2011, author = {Horstmann, Jens and Baade, Alexander and Brinkmann, Ralf}, title = {Photoacoustic blood vessel detection during surgical laser interventions}, publisher = {SPIE ECBO}, volume = {8092}, pages = {80920Z-80920Z-6}, note = {10.1117/12.889635}, abstract = {This paper presents a discussion about the potential of photoacoustics with regard to its application in surgical assistance during minimally invasive, laser assisted interventions. Aim of the work is the detection of obscured large blood vessels in order to prevent unintentional dissection. Based on spectroscopic investigations of the target tissue (liver), a wavelength for the photoacoustic excitation laser was chosen with respect to a high absorption contrast between the vessel and the surrounding liver tissue. An experimental setup featuring a simple liver model is created. Preliminary results show, that vessels with a diameter of 2 mm can be detected up to a distance of 1 mm from the treatment fibre. It is shown, that detection of acoustic waves induced inside liver is feasible over distances higher than 10 cm.}, url = {http://dx.doi.org/10.1117/12.889635}, type = {Conference Proceedings}, year = { 2011} } |