V. Horneffer, N. Linz, and Alfred Vogel,
Principles of laser-induced separation and transport of living cells, J Biomed Opt , vol. 12, no. 5, pp. 054016, 2007.
Bibtex: BibTeX
@article{Horneffer,
   author = {Horneffer, V. and Linz, N. and Vogel, A.},
   title = {Principles of laser-induced separation and transport of living cells},
   journal = {J Biomed Opt},
   volume = {12},
   number = {5},
   pages = {054016},
   note = {Horneffer, Verena
Linz, Norbert
Vogel, Alfred
Evaluation Studies
Research Support, Non-U.S. Gov't
United States
J Biomed Opt. 2007 Sep-Oct;12(5):054016.},
   abstract = {Separation and transport of defined populations of living cells grown on a thin membrane can be achieved by laser microdissection (LMD) of the sample of interest, followed by a laser-induced forward transport process [laser pressure "catapulting" (LPC)] of the dissected cell cluster. We investigate the dynamics of LMD and LPC with focused and defocused UV-A laser pulses by means of time-resolved photography. Catapulting is driven by plasma formation when tightly focused pulses are used, and by confined thermal ablation at the bottom of the sample for defocused catapulting. With both modalities, the initial specimen velocity amounts to about 50 to 60 ms. Time-resolved photography of live cell catapulting reveals that in defocused catapulting, strong shear forces arise when the sample is accelerated out of the culture medium covering the cells. By contrast, pulses focused at the periphery of the specimen cause a fast rotational movement that minimizes the flow of culture medium parallel to the sample surface, and thus the resulting shear stresses. Therefore, the recultivation rate of catapulted cells is much higher when focused pulses are used. Compared to collateral damage by mechanical forces, side effects by heat and UV exposure of the cells play only a minor role.},
   keywords = {Animals
CHO Cells
Cell Separation/ methods
Cricetinae
Cricetulus
Microdissection/ methods
Optical Tweezers
Specimen Handling/ methods},
   year = {2007}
}
Alfred Vogel, K. Lorenz, V. Horneffer, Dorthe Smolinski, and A. Gebert,
Mechanisms of laser-induced dissection and transport of histologic specimens., Biophys J , vol. 93, pp. 4481-4500, 2007.
File: biophysj.106.102277
Bibtex: BibTeX
@article{Vogel2007-7,
   author = {Vogel, A. and Lorenz, K. and Horneffer, V. and Hüttmann, G. and von Smolinski, D. and Gebert, A.},
   title = {Mechanisms of laser-induced dissection and transport of histologic specimens.},
   journal = {Biophys J},
   volume = {93},
   pages = {4481-4500},
   year = { 2007},
url = { https://doi.org/10.1529/biophysj.106.102277}
}
A Vogel, V. Horneffer, B. Lorenz, N. Linz, S. Freidank, and A. Gebert,
Principles of laser microdissection and catapulting of histologic specimens and live cells, in Laser Manipulation of Cells and Tissues, Methods in Cell Biology , Berns, M. and Greulich, K.O., Eds. San Diego: Academic Press Elsevier, 2007, pp. 153-205.
Bibtex: BibTeX
@inbook{Vogel2007-4,
   author = {Vogel, A and Horneffer, V. and Lorenz, B. and Linz, N. and Freidank, S. and Hüttmann, G. and Gebert, A.},
   title = {Principles of laser microdissection and catapulting of histologic specimens and live cells},
   booktitle = {Laser Manipulation of Cells and Tissues, Methods in Cell Biology},
   editor = {Berns, M.  and Greulich, K.O.},
   publisher = {Academic Press Elsevier},
   address = {San Diego},
   volume = {82},
   pages = {153-205},
   year = { 2007}
}
V. Horneffer, Alfred Vogel, B. Sägmüller, and K. Schütze,
Microdissection, catapulting, and microinjection of biologic specimens with femtosecond laser pulses, in SPIE/OSA Conference on Biomedical Optics ECBO,12.-16.06.2005 , 2005.
File: abstract.cfm
Bibtex: BibTeX
@inproceedings{Horneffer,
   author = {Horneffer, V. and Vogel, A. and Sägmüller, B. and Schütze, K.},
   title = {Microdissection, catapulting, and microinjection of biologic specimens with femtosecond laser pulses},
   booktitle = {SPIE/OSA Conference on Biomedical Optics ECBO,12.-16.06.2005},

}