Markus Petermann

Photo of Markus  Petermann

Master-Student



Email: name.surname(aT)physik.uni-muenchen(DoT)de
Phone:

Tom Pfeiffer, Markus Petermann, Wolfgang Draxinger, Christian Jirauschek, and Robert Huber,
Ultra low noise Fourier domain mode locked laser for high quality magahertz optical coherence tomography, Biomed. Opt. Express , vol. 9, no. 9, pp. 4130-4148, 09 2018. Optica Publishing Group.
DOI:10.1364/BOE.9.004130
Bibtex: BibTeX
@article{Pfeiffer:18,
author = {Tom Pfeiffer and Markus Petermann and Wolfgang Draxinger and Christian Jirauschek and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Fiber optics imaging; Lasers, fiber; Optical coherence tomography; Laser stabilization ; Lasers, frequency modulated ; Analog to digital converters; Dark solitons; Image quality; Laser modes; Mode locking; Optical coherence tomography},
number = {9},
pages = {4130--4148},
publisher = {Optica Publishing Group},
title = {Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography},
volume = {9},
month = {Sep},
year = {2018},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-9-9-4130},
doi = {10.1364/BOE.9.004130},
abstract = {We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong signals at large depth, the noise in optical coherence tomography images is significantly reduced. We also describe a simple model that suggests a passive physical stabilizing mechanism that leads to an automatic compensation of remaining cavity dispersion in FDML lasers.},
}
Tom Pfeiffer, Wolfgang Draxinger, Wolfgang Wieser, Thomas Klein, Markus Petermann, and Robert Huber,
Analysis of FDML lasers with meter range coherence, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 2017. pp. 100531T.
DOI:10.1117/12.2254792
Bibtex: BibTeX
@inproceedings{10.1117/12.2254792,
author = {Tom Pfeiffer and Wolfgang Draxinger and Wolfgang Wieser and Thomas Klein and Markus Petermann and Robert Huber},
title = {{Analysis of FDML lasers with meter range coherence}},
volume = {10053},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI},
editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {100531T},
abstract = {FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high
speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable
vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively
high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely
well dispersion compensated Fourier Domain Mode Locked (FDML) laser, running at 3.2 MHz sweep rate and 120 nm
spectral bandwidth. We demonstrate that this laser offers meter range coherence and enables volumetric long range OCT
of moving objects.},
keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT},
year = {2017},
doi = {10.1117/12.2254792},
URL = {https://doi.org/10.1117/12.2254792}
}
Tom Pfeiffer, Wolfgang Wieser, Thomas Klein, Markus Petermann, Jan Philip Kolb, Matthias Eibl, and Robert Huber,
Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, 042015. pp. 96970S-96970S-5.
DOI:10.1117/12.2214788
Bibtex: BibTeX
@inproceedings{10.1117/12.2214788,
author = {Tom Pfeiffer and Wolfgang Wieser and Thomas Klein and Markus Petermann and Jan-Phillip Kolb and Matthias Eibl and Robert Huber},
title = {{Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging}},
volume = {9697},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX},
editor = {Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {96970S},
abstract = {In order to realize fast OCT-systems with adjustable line rate, we investigate averaging of image data from an FDML based
MHz-OCT-system. The line rate can be reduced in software and traded in for increased system sensitivity and image
quality. We compare coherent and incoherent averaging to effectively scale down the system speed of a 3.2 MHz FDML
OCT system to around 100 kHz in postprocessing. We demonstrate that coherent averaging is possible with MHz systems
without special interferometer designs or digital phase stabilisation. We show OCT images of a human finger knuckle joint
in vivo with very high quality and deep penetration.},
keywords = {Optical coherence tomography, OCT, Fourier domain mode locking, FDML, MHz OCT, averaging, tunable laser},
year = {2016},
doi = {10.1117/12.2214788},
URL = {https://doi.org/10.1117/12.2214788}
}